Abstract

Glutamatergic dysregulation has been hypothesized to play a role in schizophrenia. The N-methyl-D-aspartate (NMDA) type of glutamate receptor especially is of interest because, in addition to binding sites for glutamate and glycine, a necessary co-agonist, this receptor also contains noncompetitive binding sites for the psychotomimetics phencyclidine (PCP), MK-801, and ketamine. PCP-induced psychosis has been a useful disease model in that both the positive as well as the negative symptomatologies seen in schizophrenia are observed. Recently, a mouse deficient in expression of the NR1 subunit gene (NMDAR1) of the heteromeric receptor has been developed and shown to display aberrant behaviors, with reduced social and sexual interactions as well as increased stereotypic motor activity. In an extensive examination of the NMDAR1 gene in our laboratory in approximately 100 chronic schizophrenic patients, 28 unique sequence changes were identified, including eight single nucleotide polymorphisms (SNPs) in the 5' untranslated region (5'UTR), six SNPs in coding regions (cSNPs), eleven intronic SNPs, two intronic deletions of 7 and 30 bp, and an intronic microinsertion/deletion. With the exception of one previously reported cSNP, all of the identified changes were novel. The frequency of polymorphisms differed significantly by ethnicity and several appeared to be in linkage disequilibrium. None of the changes appeared likely to be of functional significance, thus suggesting that changes in the genomic NMDAR1 are unlikely to contribute to the etiology of schizophrenia. Estimates of nucleotide diversity are comparable to those observed in studies of other genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.