Abstract

The cleavage site of the Neurospora VS ribozyme is located in an internal loop in a hairpin called stem-loop I. Stem-loop I undergoes a cation-dependent structural change to adopt a conformation, termed shifted, that is required for activity. Using site-directed mutagenesis and kinetic analyses, we show here that the insertion of a single-stranded linker between stem-loop I and the rest of the ribozyme increases the observed self-cleavage rate constant by 2 orders of magnitude without affecting the Mg(2+) requirement of the reaction. A distinct set of mutations that favors the formation of the shifted conformation of stem-loop I decreases the Mg(2+) requirement by an order of magnitude with little or no effect on the observed cleavage rate under standard reaction conditions. Similar trends were seen in reactions that contained Li(+) instead of Mg(2+). Mutants with lower ionic requirements also exhibited increased thermostability, providing evidence that the shifted conformation of stem-loop I favors the formation of the active conformation of the RNA. In natural, multimeric VS RNA, where a given ribozyme core is flanked by one copy of stem-loop I immediately upstream and another copy 0.7 kb downstream, cleavage at the downstream site is strongly preferred, providing evidence that separation of stem-loop I from the ribozyme core reflects the naturally evolved organization of the RNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.