Abstract
Sharing traveling experience and photos on Social Network Service or Web albums is more and more popular recently. Good sightseeing photos in specific situation such as sunset and spring season can impress tourists well, and be clues for them to consider where and when to visit for sightseeing. Regarding situations to be identified, this paper focuses on season. Compared with situations relating with weather and time of day (e.g., sunrise/sunset), whether or not different seasons have different scenery depends on sightseeing spots. Therefore, classifying sightseeing spots into season-dependent/independent is required as preprocessing for season-based classification of sightseeing photos. This paper proposes a hybrid approach for identifying season-dependent sightseeing spots, of which the first phase applies machine learning with statistical features of sightseeing photos obtained from metadata. In order to improve precision, the second phase applies color-based classification to spots identified as season-dependent in the first phase. The experimental results show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.