Abstract

Herbicide-resistant weeds pose a considerable threat to agriculture, but their resistance mechanisms are poorly understood. Differential gene expression analysis of a weed subjected to herbicide treatment is a key step toward more mechanistic studies. Such an analysis, often involving quantitative real-time PCR (qPCR), requires suitable reference genes as internal controls. In this study, we identified optimal reference genes in the noxious weed, Japanese foxtail. This weed has evolved resistance to acetyl-coenzyme A carboxylase (ACCase) inhibitors. We analyzed the stability of eight commonly used candidate reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH]; ubiquitin [UBQ]; capsine phosphatase [CAP]; beta-tubulin [TUB]; eukaryotic initiation factor 4a [EIF4A]; elongation factor-1 alpha [EF1]; 18S ribosomal RNA [18S]; 25S ribosomal RNA [25S]) from root, stem, and leaf tissue of plants that were either resistant or sensitive to ACCase inhibitors, with or without herbicide stress, using qPCR. The results were further ranked and analyzed using geNorm, NormFinder, and BestKeeper software. These analyses identified EF1 and UBQ in roots, EF1, TUB, CAP, and 18S in stems, and EF1, GAPDH, and 18S in leaves as suitable references for qPCR normalization. We have identified a set of reference genes that can be used to study herbicide resistance mechanisms in Japanese foxtail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.