Abstract

BackgroundSince its discovery around deep sea hydrothermal vents of the Galapagos Rift about 30 years ago, the chemoautotrophic symbiosis between the vestimentiferan tubeworm Riftia pachyptila and its symbiotic sulfide-oxidizing γ-proteobacteria has been extensively studied. However, studies on the tubeworm host were essentially targeted, biochemical approaches. We decided to use a global molecular approach to identify new proteins involved in metabolite exchanges and assimilation by the host. We used a Subtractive Suppression Hybridization approach (SSH) in an unusual way, by comparing pairs of tissues from a single individual. We chose to identify the sequences preferentially expressed in the branchial plume tissue (the only organ in contact with the sea water) and in the trophosome (the organ housing the symbiotic bacteria) using the body wall as a reference tissue because it is supposedly not involved in metabolite exchanges in this species.ResultsWe produced four cDNA libraries: i) body wall-subtracted branchial plume library (BR-BW), ii) and its reverse library, branchial plume-subtracted body wall library (BW-BR), iii) body wall-subtracted trophosome library (TR-BW), iv) and its reverse library, trophosome-subtracted body wall library (BW-TR). For each library, we sequenced about 200 clones resulting in 45 different sequences on average in each library (58 and 59 cDNAs for BR-BW and TR-BW libraries respectively). Overall, half of the contigs matched records found in the databases with good E-values. After quantitative PCR analysis, it resulted that 16S, Major Vault Protein, carbonic anhydrase (RpCAbr), cathepsin and chitinase precursor transcripts were highly represented in the branchial plume tissue compared to the trophosome and the body wall tissues, whereas carbonic anhydrase (RpCAtr), myohemerythrin, a putative T-Cell receptor and one non identified transcript were highly specific of the trophosome tissue.ConclusionQuantitative PCR analyses were congruent with our libraries results thereby confirming the existence of tissue-specific transcripts identified by SSH. We focused our study on the transcripts we identified as the most interesting ones based on the BLAST results. Some of the keys to understanding metabolite exchanges may remain in the sequences we could not identify (hypothetical proteins and no similarity found). These sequences will have to be better studied by a longer -or complete- sequencing to check their identity, and then by verifying the expression level of the transcripts in different parts of the worm.

Highlights

  • Since its discovery around deep sea hydrothermal vents of the Galapagos Rift about 30 years ago, the chemoautotrophic symbiosis between the vestimentiferan tubeworm Riftia pachyptila and its symbiotic sulfide-oxidizing γ-proteobacteria has been extensively studied

  • We focused our study on the transcripts we identified as the most interesting ones based on the BLAST results

  • General results of sequencing Global results including the total number of obtained sequences, contigs, singletons, and redundancy rates are given in Table 1 for all the libraries (the body wall-subtracted branchial plume library (BR-body wall tissue (BW)), the branchial plume-subtracted body wall library (BW-branchial filaments (BR)), the body wall-subtracted trophosome library (TR-BW) and the trophosome-subtracted body wall library (BW-TR))

Read more

Summary

Introduction

Since its discovery around deep sea hydrothermal vents of the Galapagos Rift about 30 years ago, the chemoautotrophic symbiosis between the vestimentiferan tubeworm Riftia pachyptila and its symbiotic sulfide-oxidizing γ-proteobacteria has been extensively studied. The vestimentiferan annelid Riftia pachyptila lives around hydrothermal vents on the East Pacific Rise at 2600 meters-depth These giant tubeworms form dense aggregations and constitute a major component of the biomass in these deep-sea oases of life that rely on chemosynthetic primary production [1]. Adult vestimentiferans lack a mouth, gut and anus [2] Instead, they possess a specialized tissue, called trophosome, that contains symbiotic bacteria. They possess a specialized tissue, called trophosome, that contains symbiotic bacteria This symbiosis with sulfide-oxidizing bacteria provides all the host's nutrition and is obligatory [3]. Apoptosis of infected cells in the host epidermis occurs at the end of the colonization process [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.