Abstract

Genomic Denaturing Gradient Gel Electrophoresis (gDGGE) provides an alternative to the standard method of restriction fragment length polymorphism (RFLP) analysis for identifying polymorphic sequence variation in genomic DNA. For gDGGE, genomic DNA is cleaved by restriction enzymes, separated in a polyacrylamide gel containing a gradient of DNA denaturants, and then transferred by electroblotting to nylon membranes. Unlike other applications of DGGE, gDGGE is not limited by the size of the probe and does not require probe sequence information. gDGGE can be used in conjunction with any unique DNA probe. Here we use gDGGE with probes from the proximal region of the long arm of human chromosome 21 to identify polymorphic DNA sequence variation in this segment of the chromosome. Our screening panel consisted of DNA from nine individuals, which was cleaved with five restriction enzymes and submitted to electrophoresis in two denaturing gradient conditions. We detected at least one potential polymorphism for nine of eleven probes that were tested. Two polymorphisms, one at D21S4 and one at D21S90, were characterized in detail. Our study demonstrates that gDGGE is a fast and efficient method for identifying polymorphisms that are useful for genetic linkage analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.