Abstract

Although the molecular mechanisms underpinning hepatocellular carcinoma (HCC) are unknown, gene copy number and associated mRNA expression changes are frequently reported. Comparative genomic hybridization arrays spotted with 4041 bacterial artificial chromosome clones were used to assess copy number changes in 45 HCC tissues. Seventy more HCC tissues were used to validate candidate genes by using western blots and immunohistochemistry. A total of 259 clones were associated with copy number changes that significantly differed between normal liver and HCC samples. The chromosomal region 1q32.1 containing the nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) gene was associated with tumor vascular invasion. Western blot analysis demonstrated that NUCKS1 was up-regulated in 37 of 70 (52.8%) HCC tissues compared with adjacent non-tumor tissues, and over-expressed in a vast majority of HCCs (44/52, 84.6%) as determined by immunohistochemical staining. Furthermore, immunostaining of both NUCKS1 and glypican-3 improved the diagnostic prediction of HCC. Knock-down of NUCKS1 by siRNA implied the decrease in cell viability of the Hep3B cell line and reduced tumor formation in a xenograft mouse model. NUCKS1 was identified as a potential oncogene at chromosomal 1q32.1 in patients with HCC, and it might be a valuable immunodiagnostic marker for HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.