Abstract

Uncertainty factors (UFs) are commonly used during hazard and risk assessments to address uncertainties, including extrapolations among mammals and experimental durations. In risk assessment, default values are routinely used for interspecies extrapolation and interindividual variability. Whether default UFs are sufficient for various chemical uses or specific chemical classes remains understudied, particularly for ingredients in cleaning products. Therefore, we examined publicly available acute median lethal dose (LD50), and reproductive and developmental no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) values for the rat model (oral). We employed probabilistic chemical toxicity distributions to identify likelihoods of encountering acute, subacute, subchronic and chronic toxicity thresholds for specific chemical categories and ingredients in cleaning products. We subsequently identified thresholds of toxicological concern (TTC) and then various UFs for: 1) acute (LD50s)-to-chronic (reproductive/developmental NOAELs) ratios (ACRs), 2) exposure duration extrapolations (e.g., subchronic-to-chronic; reproductive/developmental), and 3) LOAEL-to-NOAEL ratios considering subacute/acute developmental responses. These ratios (95% CIs) were calculated from pairwise threshold levels using Monte Carlo simulations to identify UFs for all ingredients in cleaning products. Based on data availability, chemical category-specific UFs were also identified for aliphatic acids and salts, aliphatic alcohols, inorganic acids and salts, and alkyl sulfates. In a number of cases, derived UFs were smaller than default values (e.g., 10) employed by regulatory agencies; however, larger UFs were occasionally identified. Such UFs could be used by assessors instead of relying on default values. These approaches for identifying mammalian TTCs and diverse UFs represent robust alternatives to application of default values for ingredients in cleaning products and other chemical classes. Findings can also support chemical substitutions during alternatives assessment, and data dossier development (e.g., read across), identification of TTCs, and screening-level hazard and risk assessment when toxicity data is unavailable for specific chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.