Abstract

Microbially-derived antimicrobial compounds are a rich source of clinical antibiotic leads. However, discovery rates have declined over the past 40 years due, in part, to high rediscovery rates of known compounds from traditional soil-based screening approaches. In this study, an ancient hot-spring water source was tested for the presence of antimicrobial-producing bacteria using culture techniques which led to isolation of two organisms capable of inhibiting the growth of multiple bacterial species. Oxford Nanopore whole genome sequencing was used to identify these two isolates as being in one of two genera; Streptomyces and Paenibacillus. Bioinformatic analysis revealed both isolates to have multiple novel secondary metabolite gene clusters. Investigations of the Streptomyces sp. by natural product chemistry techniques showed the organism to produce multiple antimicrobial compounds, these were effective methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. This study underlines the value of investigating non-traditional habitats in the search for novel antibiotic-producing organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.