Abstract

Heading cabbage is a nutritionally rich and economically important cruciferous vegetable. Black rot disease, caused by the bacterium Xanthomonas campestris pv. campestris, reduces both the yield and quality of the cabbage head. Nucleotide binding site (NBS)-encoding resistance (R) genes play a vital role in the plant immune response to various pathogens. In this study, we analyzed the expression and DNA sequence variation of 31 NBS-encoding genes in cabbage (Brassica oleracea var. capitata). These genes encoded TIR, NBS, LRR and RPW8 protein domains, all of which are known to be involved in disease resistance. RNA-seq revealed that these 31 genes were differentially expressed in leaf, root, silique, and stem tissues. Furthermore, qPCR analyses revealed that several of these genes were more highly expressed in resistant compared to susceptible cabbage lines, including Bol003711, Bol010135, Bol010559, Bol022784, Bol029866, Bol042121, Bol031422, Bol040045 and Bol042095. Further analysis of these genes promises to yield both practical benefits, such as molecular markers for marker-assisted breeding, and fundamental insights to the mechanisms of resistance to black rot in cabbage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.