Abstract

1. Intraneural microstimulation (INMS) and microneurography were used in combination to stimulate and record from muscle nociceptor primary afferent fibers of the common peroneal nerve of healthy volunteers. When pain evoked by INMS was projected to muscle, afferent activity could be evoked by innocuous and noxious pressure applied within the projected painful area. Conduction velocity of single fibers was determined by stimulating the receptive fields (RFs) electrically via needle electrodes inserted into the RF and measuring conduction latency and distance between the RF and recording electrode. 2. Pain projected to muscle during INMS trains 5-10 s in duration at threshold intensity for pain sensation was typically described as cramping and was well localized. Subjects mapped the area of the painful projected field (PF) over the skin using a pointer. 3. Fourteen slowly adaping mechanoreceptors with RF in muscle and with moderate to high receptor threshold were identified within or near the painful PF. Conduction velocities were in the range of Group III (n = 8) and Group IV (n = 6) fibers. Mean RF areas of Group III and Group IV afferents, determined by applying pressure percutaneously, were 2.71 +/- 1.14 (SE) cm2 and 3.40 +/- 1.08 (SE) cm2, respectively. Only one Group III afferent unit exhibited spontaneous activity (< 1 Hz). 4. One additional high-threshold mechanoreceptor was identified, with its RF located in the extensor tendon at the base of the big toe. This fiber had a conduction velocity of 32 m/s. During INMS, a well-localized sharp pain was projected to the tendon.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.