Abstract

Particulate matter (PM) exposure increases the risk of asthma. However, the effect of PM2.5 exposure on liver metabolism in mice with asthma symptoms remains unclear. We established an ovalbumin (OVA)-induced asthma model in mice and divided the animals into four groups: control group (C), PM2.5 exposure group (P), OVA-induced asthma group (O) and OVA-induced asthma PM2.5 exposure group (OP). Gas chromatography-mass spectrometry (GC-MS) was used to identify the metabolite markers and related perturbed metabolic pathways in mouse liver tissue after PM2.5 exposure. Multivariate analysis showed 9 and 12 potential metabolite markers in the P and OP groups, respectively, after PM2.5 exposure that were significantly correlated with lipid peroxidation indices. PM2.5 exposure perturbed 5 and 7 metabolic pathways in the P and OP groups, respectively. These metabolic pathways mainly involve the lipid metabolism, amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism. These results highlight the potential to study PM2.5-triggered alterations via liver tissue in normal and OVA-induced asthmatic mice to gain a more realistic appraisal of the resulting early toxicity events. Additionally, these results revealed potential metabolite markers of early antioxidant defense events triggered by PM2.5 and indicated that metabolite markers are more sensitive than antioxidant indicators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.