Abstract

Intercellular adhesion molecule 1 (ICAM-1) is the cellular receptor for the major group of human rhinoviruses (HRVs) and the adhesion ligand of lymphocyte function-associated antigen 1. Analysis of a series of chimeric exchanges between human and murine ICAM-1 shows that two distinct epitopes recognized by monoclonal antibodies that block rhinovirus attachment and cell adhesion map to the N-terminal first domain of ICAM-1. Furthermore the specificity for HRV binding is entirely contained within the first 88 amino acids. Mutagenesis of the four sites of N-linked glycosylation within the second domain shows that carbohydrate is not involved in virus recognition. Homologue replacement mutagenesis localizes the epitopes for virus-blocking antibodies to two regions of domain 1 predicted to form beta strand D and the loop between the F and G strands of an immunoglobulin-fold structure. Analysis of virus binding to the mutants predicts a large surface of contact between HRV and ICAM-1 domain 1 but shows that the regions most important for virus binding are coincident with the monoclonal antibody epitopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.