Abstract

Energy dependent efflux pumps confer resistance to anticancer, antimicrobial, and antiparasitic drugs. P-glycoprotein (Pgp, ABCB1) mediates resistance to a broad spectrum of antitumor drugs. Compounds that themselves are nontoxic to cells have been shown to act as inhibitors of Pgp. The mechanism of binding and transport of low-molecular-mass ligands by Pgp is still incompletely understood. This study introduces a series of propafenone-related photoaffinity ligands, which combine high specificity and selectivity for Pgp with high labeling efficiency. Molecules are intrinsically photoactivatable in the arylcarbonyl group, which represents a pharmacophoric substructure for this group of ligand molecules. A detailed study of the structure-activity relationship for this type of photoligand is presented. In subsequent experiments, these ligands were used to characterize the drug-binding domain of propafenone-type analogs. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry shows that propafenone-type ligands preferentially label fragments assigned to putative transmembrane segments 3, 5, 6, 8, 10, 11, and 12. Labeled fragments are also identified in a highly charged region of 15 amino acids in the second cytoplasmic loop. This region corresponds to the so-called EAA-like motif, which has been proposed to play a role in the interaction between transmembrane domain and nucleotide binding domain of peroxisomal ATP-binding cassette transporters. In addition, a region in cytoplasmic loop 3 and between TM12 and the N terminus of the Walker A sequence of NBD2 are labeled by the ligands. Therefore, a number of confined protein regions contribute to the drug-binding domain of propafenone-type analogs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.