Abstract

Six degrees of freedom motion response tests of a Ro-Ro model have been carried out in irregular waves under intact conditions. A stationary model was tested in different sea states for following, astern quartering and beam seas. The investigation was limited to the effect of encountered frequency components and associated magnitude of energy of the ship’s motion responses. Analysis of heave, pitch and roll motions confirmed the vulnerability of the model to certain frequency ranges resulting in an adverse effect on the responses, and these were closely related to its natural frequencies. It was confirmed that the roll motion maintains its highest oscillation around the natural frequency in all sea conditions regardless of heading angles. However spectral analysis of the heave and pitch responses revealed the wave peak frequency. Roll is magnified when the peak frequency of wave approaches the natural roll frequency; therefore keeping them apart avoids a large motion response. It was concluded that peak frequency and associated magnitude are two important inherent characteristics of motion responses. Detection of influential parameters of encountered wave through heave and pitch responses could be utilised to limit a large ship’s motion at sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.