Abstract

Hepatocellular carcinoma (HCC) has a high degree of malignancy and a poor prognosis. Immune infiltration-related genes have shown good predictive value in the prognosis of many solid tumours. In this study, we established and verified prognostic biomarkers consisting of immune infiltration-related genes in HCC. Gene expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. Differential gene expression analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression algorithm were used to screen prognostic immune infiltration-related genes and to construct a risk scoring model. Kaplan-Meier (KM) survival plots and receiver operating characteristic (ROC) curve analysis were used to evaluate the prognostic performance of the risk scoring model in the TCGA-HCC cohort. In addition, a nomogram model with a risk score was established, and its predictive performance was verified by ROC analysis and calibration plot analysis in the TCGA-HCC cohort. Gene set enrichment analysis (GSEA) identified pathways and biological processes that may be enriched in the high-risk group. Finally, immune infiltration analysis was used to explore the characteristics of the tumour microenvironment related to the risk score. We identified 17 immune infiltration-related genes with prognostic value and constructed a risk scoring model. ROC analysis showed that the risk scoring model can accurately predict the 1-year, 3-year, and 5-year overall survival (OS) of HCC patients in the TCGA-HCC cohort. KM analysis showed that the OS of the high-risk group was significantly lower than that of the low-risk group (P < 0.001). The nomogram model effectively predicted the OS of HCC patients in the TCGA-HCC cohort. GSEA indicated that the immune infiltration-related genes may be involved in biological processes such as amino acid and lipid metabolism, matrisome and small molecule transportation, immune system regulation, and hepatitis virus infection. Immune infiltration analysis showed that the level of immune cell infiltration in the high-risk group was low, and the risk score was negatively correlated with infiltrating immune cells. Our prognostic model based on immune infiltration-related genes in HCC could help the prognostic assessment of HCC patients and provide potential targets for HCC inhibition.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12885-022-09587-0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.