Abstract
Conversion of renewable biomass to useful molecules in microbial cell factories can be approached in a rational and systematic manner using constraint-based reconstruction and analysis. Filtering for high confidence in silico designs is critical because in vivo construction and testing of strains is expensive and time consuming. As such, a workflow was devised to analyze the robustness of growth-coupled production when considering the biosynthetic costs of the proteome and variability in enzyme kinetic parameters using a genome-scale model of metabolism and gene expression (ME-model). A collection of 2632 unfiltered knockout designs in Escherichia coli was evaluated by the workflow. A ME-model was used in the workflow to test the designs’ growth-coupled production in addition to a less complex genome-scale metabolic model (M-model). The workflow identified 634 M-model growth-coupled designs which met the filtering criteria and 42 robust designs, which met growth-coupled production criteria using both M and ME-models. Knockouts were found to follow a pattern of controlling intermediate metabolite consumption such as pyruvate consumption and high flux subsystems such as glycolysis. Kinetic parameter sampling using the ME-model revealed how enzyme efficiency and pathway tradeoffs can affect growth-coupled production phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.