Abstract

OTU proteases antagonize the cellular defense in the host cells and involve in pathogenesis. Intriguingly, P. falciparum, P. vivax, and P. yoelii have an uncharacterized and highly conserved viral OTU-like proteins. However, their structure, function or inhibitors have not been previously reported. To this end, we have performed structural modeling, small molecule screening, deconjugation assays to characterize and develop first-in-class inhibitors of P. falciparum, P. vivax, and P. yoelii OTU-like proteins. These Plasmodium OTU-like proteins have highly conserved residues in the catalytic and inhibition pockets similar to viral OTU proteins. Plasmodium OTU proteins demonstrated Ubiquitin and ISG15 deconjugation activities as evident by intracellular ubiquitinated protein content analyzed by western blot and flow cytometry. We screened a library of small molecules to determine plasmodium OTU inhibitors with potent anti-malarial activity. Enrichment and correlation studies identified structurally similar molecules. We have identified two small molecules that inhibit P. falciparum, P. vivax, and P. yoelii OTU proteins (IC50 values as low as 30 nM) with potent anti-malarial activity (IC50 of 4.1-6.5 µM). We also established enzyme kinetics, druglikeness, ADME, and QSAR model. MD simulations allowed us to resolve how inhibitors interacted with plasmodium OTU proteins. These findings suggest that targeting malarial OTU-like proteases is a plausible strategy to develop new anti-malarial therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.