Abstract

Using proteomic analyses, a study was carried out aimed at understanding the molecular mechanism of interaction between Fusarium graminearum and Triticum aestivum. Wheat spikelets were inoculated with H2O and conidia spores of F. graminearum. Proteins were extracted from spikelets harvested at three time points: 1, 2 and 3 days post inoculation. About 1380 protein spots were displayed on 2-D gels stained with Sypro Ruby. In total, 41 proteins were detected to be differentially regulated due to F. graminearum infection, and were analyzed with LC-MS/MS for their identification. The proteins involved in the antioxidant and jasmonic acid signaling pathways, pathogenesis-related response, amino acid synthesis and nitrogen metabolism were up-regulated, while those related to photosynthesis were less abundant following F. graminearum infection. The DNA-damage inducible protein was found to be induced and glycosylated in F. graminearum-infected spikelets. Using TargetP program, seven of the identified wheat proteins were predicted to be located in the chloroplast, implying that the chloroplast is the organelle mostly affected by F. graminearum infection. Eight identified fungal proteins possess possible functions such as antioxidant and acquiring carbon from wheat through glycolysis in a compatible interaction between F. graminearum and wheat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.