Abstract

HLA-DM (DM) functions as a peptide editor by catalyzing the release of class II-associated invariant chain peptides (CLIP) and other unstable peptides, thus supporting the formation of stable class II-peptide complexes for presentation. To investigate the general features that determine the DM susceptibility of HLA-DR1/peptide complexes, we generated a large DM-sensitive peptide repertoire from an M13 bacteriophage display library using a novel double selection protocol: we selected bacteriophage capable of binding to DR1 molecules and, subsequently, we enriched DR1-bound bacteriophage susceptible to elution by purified DM molecules. Sequence and mutational analyses of the DR1/DM double-selected peptides revealed that the amino acids Gly and Pro play a destabilizing role in the dissociation kinetics of DR1 ligands. This observation was confirmed also in natural peptide sequences such as CLIP 89-101, HA 307-319 and bovine collagen II (CII) 261-273. Our results demonstrate that DM susceptibility does not only depend on the number and nature of anchor residues, or the peptide length. Instead, less obvious sequence characteristics play a major role in the DM editing process and ultimately in the composition of peptide repertoires presented to T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.