Abstract

Material properties largely depend on their structure, and are strongly dependent on the scale of observation. Under the influence of various processes, the structure of a material can undergo evolution, which leads to major changes in the mechanical parameters and morphology of the medium. To understand the behaviour of a given material exposed to the influence of various factors, e.g. loading and temperature treatment, and to be able to modify it appropriately, it is crucial to recognize its structure both in the scale of engineering applications and at the micro-scale. The article proposes a procedure for assessing changes in the structure of sandstone exposed to the temperature treatment. The presented procedure allows the morphology of the material to be evaluated and the influence of temperature treatment on mechanical parameters of rocks to be analysed, by combining use of different laboratory techniques. The changes in rock material have been characterized using three investigative techniques, i.e. a uniaxial compression test, nanoindentation and micro-computed tomography. The uniaxial compression tests were carried out for 11 different temperature values in the range of 23–1000 °C, which enabled the determination of the change in uniaxial compressive strength and Young’s modulus of the sandstone as a function of temperature. Micro-scale laboratory tests were utilised to identify changes in the mechanical and morphological parameters of the sandstone exposed to the temperature of 1000 °C. The results were referred to those obtained for the reference samples, i.e. not subjected to heating (T = 23 °C). Comparison of the results showed an evident relation between the microstructure changes and the mesoscopic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.