Abstract

AbstractCarbonation‐induced corrosion of steel in concrete can allow for premature degradation of structures. Corrosion probes in health monitoring systems can assess concrete carbonation and steel corrosion rates. The electrochemical noise (EN) technique has advantages for corrosion sensing. Instrumented concrete columns were fitted with a carbonation chamber for accelerated testing. EN was assessed through statistical evaluation of noise time signatures, noise resistance, and spectral analysis. The mean noise potential for the electrodes showed electronegative potential and correspondingly high rms noise current, indicative of corrosion activation in carbonated concrete. The estimated corrosion rates obtained from the noise impedance were comparable to those resolved from the polarization resistance and noise resistance. The shot noise analysis indicated isolated spontaneous noise events associated with the activation of local steel anodes. The outcomes of the testing indicate that the placement of low‐cost sensors and passive EN measurements can be used to monitor the onset of carbonation‐induced corrosion of steel in concrete and provide estimates on corrosion rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.