Abstract
BackgroundThe benefits of using the oxidized oils from rendering and recycling as an economic source of lipids and energy in animal feed always coexist with the concerns that diverse degradation products in these oxidized oils can negatively affect animal health and performance. Therefore, the quality markers that predict growth performance could be useful when feeding oxidized oils to non-ruminants. However, the correlations between growth performance and chemical profiles of oxidized oils have not been well examined. In this study, six thermally oxidized soybean oils (OSOs) with a wide range of quality measures were prepared under different processing temperatures and processing durations, including 45 °C-336 h; 67.5 °C-168 h; 90 °C-84 h; 135 °C-42 h; 180 °C-21 h; and 225 °C-10.5 h. Broilers and nursery pigs were randomly assigned to diets containing either unheated control soybean oil or one of six OSOs. Animal performance was determined by measuring body weight gain, feed intake, and gain to feed ratio. The chemical profiles of OSOs were first evaluated by common indicative tests, including peroxide value, thiobarbituric acid reactive substances, p-anisidine value, free fatty acids, oxidized fatty acids, unsaponifiable matter, insoluble impurities, and moisture, and then analyzed by the liquid chromatography-mass spectrometry-based chemometric analysis.ResultsAmong common quality indicators, p-anisidine value (AnV), which reflects the level of carbonyl compounds, had the greatest inverse correlation with the growth performance of both broilers and pigs, followed by free fatty acids and oxidized fatty acids. Among the 17 aldehydes identified in OSOs, C9-C11 alkenals, especially 2-decenal and 2-undecenal, had stronger inverse correlations (r < − 0.8) with animal performance compared to C5-C8 saturated alkanals, suggesting that chain length and unsaturation level affect the toxicity of aldehydes.ConclusionsAs the major lipid oxidation products contributing to the AnV, individual C9-C11 unsaturated aldehydes in heavily-oxidized oils could function as effective prediction markers of growth and feed intake in feeding non-ruminants.
Highlights
The benefits of using the oxidized oils from rendering and recycling as an economic source of lipids and energy in animal feed always coexist with the concerns that diverse degradation products in these oxidized oils can negatively affect animal health and performance
Animal performance Compared to feeding control soybean oil (CSO), feeding the 45 °C-336 h and 67.5 °C-168 h Oxidized soybean oil (OSO) did not affect the average daily gain (ADG) and average daily feed intake (ADFI) of broilers and nursery pigs except a minor effect of the 67.5 °C-168 h OSO on G:F (Table 1)
Feeding the 135 °C-42 h OSO resulted in the lowest ADG, ADFI, and G:F in broilers, and the lowest ADG and G:F in nursery pigs
Summary
The benefits of using the oxidized oils from rendering and recycling as an economic source of lipids and energy in animal feed always coexist with the concerns that diverse degradation products in these oxidized oils can negatively affect animal health and performance. The temperature adopted by restaurants and food industries generally ranges from 175 to 190 °C, while baking and pan frying can go over 225 °C Under these thermal treatments, hydrolysis, oxidation, and polymerization of fat or oil can occur, resulting in the degradation of triacylglycerols, fatty acids, and antioxidants, as well as the formation of lipid oxidation products (LOP) [7]. Thermally oxidized oils contain the ligands of peroxisome proliferator-activated receptor α (PPARα), which can decrease triacylglycerol and cholesterol levels in the liver and plasma for the prevention of dyslipidemia-related morbidities [14,15,16,17,18] All these bioactivities of oxidized oils have potential to affect the growth and feed intake of exposed animals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.