Abstract

Functional MRI (fMRI) is a valuable brain imaging technique. A significant problem, when analyzing fMRI time series, is the finding of functional brain networks when the brain is at rest, i.e. no external stimulus is applied to the subject. In this work, we present a probabilistic method to estimate the Resting State Networks (RSNs) using a model-based approach. More specifically, RSNs are assumed to be the result of a clustering procedure. In order to perform the clustering, a mixture of regression models are used. Furthermore, special care has been given in order to incorporate important functionalities, such as spatial and embedded sparsity enforcing properties, through the use of informative priors over the model parameters. Another interesting feature of the proposed scheme is the flexibility to handle all the brain time series at once, allowing more robust solutions. We provide comparative experimental results, using an artificial fMRI dataset and two real resting state fMRI datasets, that empirically illustrate the efficiency of the proposed regression mixture model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.