Abstract
<div class="section abstract"><div class="htmlview paragraph">The ongoing global demand for greater energy efficiency plays an essential role in vehicle development, especially in the case of electric vehicles (EVs). The thermal management of the full vehicle is becoming increasingly important, since the Heating, Ventilation, and Air Conditioning (HVAC) system has a significant impact on the EV range. Therefore the EV design requires new guidelines for thermal management optimization.</div><div class="htmlview paragraph">In this paper, an advanced method is proposed to identify the most influential cabin design factors which affect the cabin thermal behavior during a cool down drive cycle in hot environmental conditions. These parameters could be optimized to reduce the energy consumption and to increase the robustness of the vehicle thermal response.</div><div class="htmlview paragraph">The structured Taguchi’s <i>Design for Six Sigma</i> (DFSS) approach was coupled with CFD-Thermal FE simulations, thanks to increased availability of HPC. The first control factors selected were related to the thermal capacity of the panel duct, dashboard, interior door panels and seats. Surface IR emissivity and solar radiation absorptivity of these components were then added to the study. Car glass with absorptive and reflective glazing were finally included in the study. The design space of 18 vehicle configurations was simulated in spring and hot summer conditions, with steady state thermal simulations. A 2-step optimization was then conducted, trying first to increase the robustness of the cabin response and, secondly, to reduce the equivalent temperature actually felt by passengers. The <i>Verify</i> phase was then conducted on the <i>Best Engineering</i> design emerged by the 2-step optimization, through quasi-transient CFD-Thermal FE analyses. The thermal results were then sent to a CFD 1D energy prediction model, confirming the HV battery energy saving and the extended range reached during the cool down drive cycle.</div></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SAE International Journal of Advances and Current Practices in Mobility
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.