Abstract

[NiFe]–hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so–called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP–dependent condensation reaction, the C–terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]–hydrogenase active site cofactor. We present a FT–IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF–catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro–electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (–N=C=S) rather than thiocyanate (–S–C≡N). This has important implications for cyanyl–group channeling during [NiFe]–hydrogenase cofactor generation.

Highlights

  • Hydrogenases catalyze reversible hydrogen activation in archaea, bacteria, and plants

  • The peaks at 2092/ 2074 and 2081/ 2072 cm–1 have been assigned to Fe(II)–(CN)2 while band contributions at 1943 and 1955 cm–1 stem from the asymmetric stretch vibration of Fe(II)–carbon monoxide species (CO) [13,33]

  • We present a FT–IR spectroscopic identification of the naturally cyanated cysteinyl residue of HypE isolated from E. coli

Read more

Summary

Introduction

Hydrogenases catalyze reversible hydrogen activation in archaea, bacteria, and plants. They are primarily found in the context of anaerobic respiration, fermentation, and photosynthesis [1,2]. The composition of the metal cofactor allows classification into Fe–only, [FeFe]–, and [NiFe]–hydrogenases [4]. The latter class is ubiquitous in prokaryotes, and several crystal structures of these enzymes have been described [5,6,7,8]. Their active site cofactor comprises a nickel ion coordinated by four cysteinyl residues.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.