Abstract

Superoxide dismutases are enzymes that protect biological systems against oxidative damage caused by superoxide radicals. In this paper, a detailed characterization is presented on the stability of SmSOD, the dimeric cambialistic superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans, towards temperature and guanidine hydrochloride. Thermal and chemical denaturations were investigated by means of circular dichroism, fourth-derivative UV spectroscopy and fluorescence measurements. Data indicate that SmSOD is endowed with a significant thermostability and that both its thermal and guanidine hydrochloride-induced unfolding processes occur through a three-state model, characterized by a catalytically active dimeric intermediate species. To our knowledge, SmSOD is the smallest known dimeric protein that populates a well-structured active dimeric rather than a monomeric intermediate during unfolding processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.