Abstract

The expression of hepatitis B viral (HBV) antigens in liver tissue reflects the replicative status of chronic HBV infection. We have previously recognized a novel marginal pattern of hepatitis B surface antigen (HBsAg) in hepatocytes, which usually clusters in groups and emerges at the late non-replicative phase. This study was designed to investigate whether the marginal-type HBsAg represented the gene product of a specific HBV-surface mutant. Microdissection of cirrhotic nodules homogeneously expressing marginal HBsAg was performed on two of 12 resected livers from HBsAg-seropositive patients with hepatocellular carcinoma. The gene presumably encoding marginal HBsAg was polymerase chain reaction (PCR)-cloned, sequenced and analysed. In vitro transfection and expression of the cloned surface mutant plasmids were performed on the Huh7 cell line to illustrate intrahepatic HBsAg expression. Immunohistochemical staining revealed that the marginal HBsAg was positive for pre-S1 and thus contained large surface proteins. The PCR cloning and sequencing of the genes presumably encoding marginal-type HBsAg in both cases revealed the same deletion at the 5' terminus (nt 2-55) of pre-S2. A point mutation on the small-surface (S) antigen was also found in one case. The pre-S2 deletion sequence and the mutation sites of the S gene coincide with human lymphocyte antigen-restricted T- and/or B-cell epitopes. In vitro transfection of the mutant plasmid revealed a blot-like retention or accumulation of HBsAg in the cytoplasm or at the periphery of hepatocytes, accompanied by a decreased secretion of HBsAg in the culture supernatant, mimicking intrahepatic expression. A natural pre-S2 deletion mutant was identified in hepatocytes expressing a novel marginal pattern of HBsAg, which probably contains mutant, large, surface proteins. The biological significance of the pre-S2 deletion mutant should be interesting in view of the clustering proliferation of hepatocytes expressing marginal HBsAg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.