Abstract
Because of the insidious nature of lymphatic metastatic cancer, accurate imaging tracing is very difficult to achieve in the clinic. Previous studies have developed the LARGR peptide (named TMVP1) as a radiotracer for vascular endothelial growth factor receptor-3 (VEGFR-3) imaging in cancer. However, its affinity for the target remains insufficient, resulting in low imaging sensitivity. In this study, we identified a high-affinity VEGFR-3 targeting peptide, named TMVP1446, using a multiplex screening platform. TMVP1446 demonstrated a dissociation constant of 8.97 × 10-8 M. Both in vitro and in vivo assays confirmed that fluorescently labeled TMVP1446 specifically bound to VEGFR-3. In a 4T1-luciferase tumor mouse model, cyanine 7-labeled TMVP1446 effectively discriminated between contralateral normal lymph nodes (c-LN) and cancer-metastatic sentinel lymph nodes (m-SLN). To evaluate the potential of TMVP1446, we developed a novel VEGFR-3 positron emission tomography radiotracer ([68Ga]Ga-DOTA-TMVP1446) for cancer-m-SLN imaging. [68Ga]Ga-DOTA-TMVP1446 accurately detected and assessed the status of lymph node metastasis, even in micrometastatic tumors, in the B16-F10 mouse tumor model. These findings suggest that TMVP1446 has great potential for advancing VEGFR-3 molecular imaging and metastatic sentinel lymph node imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.