Abstract

Brucellosis is an important zoonotic disease worldwide, caused by Brucella spp., which are facultative intracellular bacteria with no classic virulence factors, as virulence is dependent on the ability to invade and replicate within host cells. In this study, we identified a novel gene bab_RS22045 that encodes a small highly conserved protein in Rhizobiales. To investigate the role of this gene, a deletion mutant and complement strain were constructed. Virulence testing showed that bab_RS22045 is necessary for Brucella virulence, and was designated as virulence-related hypothetical protein, VhpA. The results of a cell infection experiment showed that vhpA was not associated with Brucella adherence to and invasion of HeLa cells, or further intracellular survival within RAW264.7 cells. The results of sensitivity testing showed the vhpA mutant had similar sensitivity to hydrogen peroxide, polymyxin B, and sodiumnitroprusside as the wild-type (WT) strain. Interestingly, RNA-seq analysis showed that deletion of the vhpA geneaffected the expression patterns of multiple Brucella genes, and the main four up-regulated genes and five down-regulated genes were further confirmed using quantitative real-time PCR analysis. Subsequently, a series of over-expression strains were constructed, and virulence testing showed that over-expression of four up-regulated genes (bab_RS17930, bab_RS17925, bab_RS26460, and bab_RS30050) significantly reduced virulence of the WT strain, and over-expression of bab_RS18680 in the vhpA mutant partially restored virulence, suggesting that vhpA plays an important role in Brucella virulence by changing the expression patterns of multiple genes. Additionally, heterogeneous complementary analysis showed that the homologous vhpA genes of Sinorhizobium meliloti and Agrobacterium tumefaciens could not restore virulence of the vhpA mutant, although VhpA is a highly conserved protein in Rhizobiales. Overall, a novel, small, hypothetical gene was identified that is associated with B.abortus virulence, which highlights the roles of small encoding genes in Brucella virulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.