Abstract

Aldosterone-producing adenoma (APA), characterized by unilaterally excessive aldosterone production, is a common cause of primary aldosteronism. Ferroptosis, a recently raised iron-dependent mode of programmed cell death, has been involved in the development and therapy of various diseases. This study obtained datasets of the mRNA and lncRNA expression profiles for APA and adjacent adrenal gland (AAG) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and lncRNAs (DE lncRNAs) associated with ferroptosis were identified. Enrichment analyses indicated 89 ferroptosis-related DEGs were primarily enriched in ROS related processes and ferroptosis. Two physical cores, and one combined core were identified in the protein-protein interaction (PPI). DEGs and clinical traits were used in conjunction to screen eight hub genes from two hub modules and 89 DEGs. A competitive endogenous RNA (ceRNA) network was constructed via co-express analysis. Thereafter, molecular docking was used to identify potential targets. Two active compounds, QL-X-138 and MK-1775, bound to AURKA and DUOX1, respectively, with the lowest binding energies. Molecular dynamics simulation verified the stability of the two complexes. In summary, our studies identified eight hub genes and a novel ceRNA regulatory network associated with ferroptosis, wherein QL-X-138 and MK-1775 were considered to be potential drugs for treating APA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.