Abstract
Drug toxicity is a key issue for drug R&D, a fundamental challenge of which is to screen for the targets genome-wide. The anticancer tyrosine kinase inhibitor sunitinib is known to induce cardiotoxicity. Here, to understand the molecular insights of cardiotoxicity by sunitinib at the genome level, we used a genome-wide drug target screening technology (GPScreen) that measures drug-induced haploinsufficiency (DIH) in the fission yeast Schizosaccharomyces pombe genome-wide deletion library and found a mitochondrial DNA polymerase (POG1). In the results, sunitinib induced more severe cytotoxicity and mitochondrial damage in POG1-deleted heterozygous mutants compared to wild type (WT) of S. pombe. Furthermore, knockdown of the human ortholog POLG of S. pombe POG1 in human cells significantly increased the cytotoxicity of sunitinib. Notably, sunitinib dramatically decreased the levels of POLG mRNAs and proteins, of which downregulation was already known to induce mitochondrial damage of cardiomyocytes, causing cardiotoxicity. These results indicate that POLG might play a crucial role in mitochondrial damage as a gene of which expressional pathway is targeted by sunitinib for cardiotoxicity, and that genome-wide drug target screening with GPScreen can be applied to drug toxicity target discovery to understand the molecular insights regarding drug toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.