Abstract
Purpose Metabolic genes are associated with the occurrence and development of tumors. Metabolic-related risk models have showed partly prognostic predictive ability in cancers. However, the correlation between metabolic-related genes (MRGs) and the outcome of colorectal cancer is still poorly understood. Patients and methods TCGA database is used as the training cohort; while GSE39582 is the verification cohort. The least absolute shrinkage and selection operator Cox regression analysis were utilized to identify the MRGs and establish a genetic risk scoring model. A nomogram by integrating MRGs risk scores with TNM stage was constructed. The potential biological mechanisms were explored using gene set enrichment analysis. Associations of the signature with immune cell infiltrations and the tumor mutation burden (TMB) were also uncovered by Spearman rank test. Results A six-gene metabolic signature was identified. Based on the risk scoring model with the signature, patients were divided into two groups (high-risk versus low-risk). The overall survival (OS) duration of patients with high-risk were quite shorter than those of low-risk patients (TCGA: p < .001, GSE39582: p < .001). Metabolic-related pathways were major enriched in low-risk group, while the high-risk group exhibited multiple immune-related pathways. Moreover, our signature was more linear dependent with antigen-presenting cell than effector immune cells, and a positive correction were seen between our signature and TMB. Conclusion Our research has discovered a six-gene metabolic signature to predict the OS of colorectal cancer. These genes may play significant roles in colorectal cancer regulating tumor microenvironment and serving as potential biomarkers for anti-cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.