Abstract

ObjectivesThis study designed and evaluated an end-to-end deep learning solution for cardiac segmentation and quantification. BackgroundSegmentation of cardiac structures from coronary computed tomography angiography (CCTA) images is laborious. We designed an end-to-end deep-learning solution. MethodsScans were obtained from multicenter registries of 166 patients who underwent clinically indicated CCTA. Left ventricular volume (LVV) and right ventricular volume (RVV), left atrial volume (LAV) and right atrial volume (RAV), and left ventricular myocardial mass (LVM) were manually annotated as ground truth. A U-Net−inspired, deep-learning model was trained, validated, and tested in a 70:20:10 split. ResultsMean age was 61.1 ± 8.4 years, and 49% were women. A combined overall median Dice score of 0.9246 (interquartile range: 0.8870 to 0.9475) was achieved. The median Dice scores for LVV, RVV, LAV, RAV, and LVM were 0.938 (interquartile range: 0.887 to 0.958), 0.927 (interquartile range: 0.916 to 0.946), 0.934 (interquartile range: 0.899 to 0.950), 0.915 (interquartile range: 0.890 to 0.920), and 0.920 (interquartile range: 0.811 to 0.944), respectively. Model prediction correlated and agreed well with manual annotation for LVV (r = 0.98), RVV (r = 0.97), LAV (r = 0.78), RAV (r = 0.97), and LVM (r = 0.94) (p < 0.05 for all). Mean difference and limits of agreement for LVV, RVV, LAV, RAV, and LVM were 1.20 ml (95% CI: −7.12 to 9.51), −0.78 ml (95% CI: −10.08 to 8.52), −3.75 ml (95% CI: −21.53 to 14.03), 0.97 ml (95% CI: −6.14 to 8.09), and 6.41 g (95% CI: −8.71 to 21.52), respectively. ConclusionsA deep-learning model rapidly segmented and quantified cardiac structures. This was done with high accuracy on a pixel level, with good agreement with manual annotation, facilitating its expansion into areas of research and clinical import.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.