Abstract

The so-called “lumping approach” is widely used to study complex processes such as hydrocracking of vacuum residue. In order to describe the composition changes in such systems, not only must the kinetic parameters be determined, but the lumped reactions that occur should also be identified. In this study, the modeling of catalytic hydrocracking of vacuum gas oil has been carried out using six component lumps. Three different identification strategies have been developed to determine the reaction subnetwork containing a given number of reaction pathways that provides the data fit. The strategies were compared according to their tendency to provide increasingly better results, as a function of the number of reactions present. Although, in this way, 40% of the original reaction superstructure was eliminated from the system, the kinetic parameters of the remaining reactions still could not be identified with complete certainty. Hence, the linearized state-space model representations of the reaction networks ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.