Abstract

The Borrelia burgdorferi Rrp1 protein is a diguanylate cyclase that controls a regulon consisting of approximately 10% of the total genome. Because Rrp1 lacks a DNA-binding domain, its regulatory capability is most likely mediated through the production of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). C-di-GMP binds to and activates the regulatory activity of proteins that harbor a PilZ domain. The occurrence of a PilZ domain within a protein is not in and of itself sufficient to convey c-di-GMP binding, as other structural aspects of the protein are important in the interaction. In this study, we have assessed the expression and c-di-GMP binding ability of the sole PilZ domain-containing protein of B. burgdorferi B31, PlzA. PlzA was determined to be upregulated by tick feeding and to be expressed during mammalian infection. The gene is highly conserved and present in all Borrelia species. Analyses of recombinant PlzA demonstrated its ability to bind c-di-GMP and site-directed mutagenesis revealed that this interaction is highly specific and dependent on Arg residues contained within the PilZ domain. In summary, this study is the first to identify a c-di-GMP effector molecule in a spirochete and provides additional evidence for the existence of a complete c-di-GMP regulatory network in the Lyme disease spirochete, B. burgdorferi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.