Abstract

Powdery mildew, a wheat (Triticum aestivum L.) foliar disease caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici, imposes a constant challenge on wheat production in areas with cool or maritime climates. This study was conducted to identify and transfer the resistance gene in the newly identified common wheat accession ‘D29’. Genetic analysis of the F2 population derived from a cross of D29 with the susceptible elite cultivar Y158 suggested a single dominant gene is responsible for the powdery mildew resistance in this germplasm. This gene was mapped to chromosome 2AL in a region flanked by microsatellite markers Xgdm93 and Xhbg327, and co-segregated with sequence-tagged site (STS) markers Xsts_bcd1231 and TaAetPR5. An allelic test indicated that the D29 gene was allelic to the Pm4 locus. To further evaluate the resistance conferred by this gene and develop new germplasms for breeding, this gene, as well as Pm4a and Pm4b, was transferred to Y158 through backcross and marker-assisted selection. In the resistance spectrum analysis, the D29 gene displayed a resistance spectrum distinguishable from the other Pm4 alleles, including Pm4a, Pm4b, and Pm4c, and thus was designated as Pm4e. The identification of new allelic variation at the Pm4 locus is important for understanding the resistance gene evolution and for breeding wheat cultivars with powdery mildew resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.