Abstract

1. Aldehyde oxidase (AO enzymes)-mediated oxidation predominantly occurs at a carbon atom adjacent to the nitrogen on aromatic azaheterocycles. In the current report, we identified that AO enzymes oxidation took place at both the C-2 and C-4 positions of the methylquinoline moiety of Compound A based on data from mass spectrometric analysis, AO enzymes “litmus” test, and comparison with authentic standards.2. To assess the potential for inadequate coverage for these two AO enzyme-mediated metabolites in nonclinical safety studies, given concerns due to differences in AO enzymes expression between preclinical species and humans, the human circulating levels of the two AO enzyme-mediated metabolites were predicted prospectively using in vitro and in vivo models. Both formation clearance and elimination clearance of the two metabolites were predicted based on in vitro to in vivo correlation and comparison with in vivo data from rats.3. The result showed that the 4-OH metabolite of Compound A would account for less than 3% of the total drug-related exposure in human plasma, while the exposure to the 2-oxo metabolite would be relatively high (∼70%).4. The predicted human exposure levels for the two metabolites are in similar ranges as those observed in monkeys. These data taken together support the advancement to clinical development of Compound A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.