Abstract

Xylogen-like arabinogalactan protein (XYLP) is an atypical lipid transport protein. In this study, 23 Phyllostachys edulis XYLPs were identified, and their proteins contain characteristic structures of AGP and nsLTP domain. All PeXYLPs can be divided into four clades, and their genes were unevenly distributed on 11 chromosome scaffolds. Collinear analysis revealed that segmental duplication was the main driver for PeXYLP family expansion. The cis-acting elements presented in the promoter are involved in various regulations of PeXYLPs expression. G.O. annotation revealed that PeXYLPs are mainly interested in lipid transport and synthesis and primarily function at the plasma membrane. Transcriptome analysis revealed that PeXYLPs were spatiotemporally expressed and displayed significant variability during various tissue development. Besides that, some PeXYLPs also respond to multiple phytohormones and abiotic stresses. By semi-quantitative RT-PCR, the response of some PeXYLPs to MeJA was confirmed, and the proteins were shown to localize to the plasma membrane mainly. WGCNA in defined regions of fast-growing bamboo shoots revealed that 5 PeXYLPs in 4 gene co-expression modules showed a positive module-trait relationship with three fast-growing regions. This systematic analysis of the PeXYLP family will provide a foundation for further insight into the functions of individual PeXYLP in a specific tissue or organ development, phytohormone perception, and stress responses in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.