Abstract

In this study, rigid polyurethane (PU) and polyisocyanurate (PIR) foam samples made from renewable material (tall oil fatty acid) based polyols were analyzed by pyrolysis gas chromatography mass spectrometry (Py-GC/MS) to obtain information about the full relative smoke content, with a focus on substance identification by their functional groups and hazardousness. The relative content of gaseous products produced during the thermal degradation was evaluated between the two samples, differenced by their assigned isocyanate (NCO) index value—150 and 300. The main thermal degradation components of the rigid PU-PIR foam were found to originate from the decomposition of isocyanate, primarily forming 4,4′-methylenedianiline, 3,3′-diaminodiphenylmethane, N-methylaniline, aniline, 4-benzylaniline and phenyl isocyanate. Hazard analysis revealed that the most common hazards were the hazards related to health: H315 (36%), H319 (28%), H335 (25%), and H302 (23%). The chemical compound with the highest relative content value—4,4′-methylenedianiline (45.3% for PU and 52.4% for PIR)—was identified to be a suspected carcinogen and mutagen. The focus of the study was identifying and evaluating the relative quantities of the produced gaseous products, examine their hazardousness, and provide information on the released thermal degradation products to form a renewable-source based rigid PU and PIR foam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.