Abstract

Efficient implementation of a neural network-based strategy for the online adaptive control of complex dynamical systems characterized by an interconnection of several subsystems (possibly nonlinear) centers on the rapidity of the convergence of the training scheme used for learning the system dynamics. For illustration, in order to achieve a satisfactory control of a multijointed robotic manipulator during the execution of high speed trajectory tracking tasks, the highly nonlinear and coupled dynamics together with the variations in the parameters necessitate a fast updating of the control actions. For facilitating this requirement, a multilayer neural network structure that includes dynamical nodes in the hidden layer is proposed, and a supervised learning scheme that employs a simple distributed updating rule is used for the online identification and decentralized adaptive control. Important characteristic features of the resulting control scheme are discussed and a quantitative evaluation of its performance in the above illustrative example is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.