Abstract

Many well-established singular perturbation theories for singularly perturbed systems require the full knowledge of system model parameters. In order to obtain an accurate and faithful model, a new identification scheme for singularly perturbed nonlinear system using multitime-scale recurrent high-order neural networks (NNs) is proposed in this paper. Inspired by the optimal bounded ellipsoid algorithm, which is originally designed for discrete-time systems, a novel weight updating law is developed for continuous-time NNs identification process. Compared with other widely used gradient-descent updating algorithms, this new method can achieve faster convergence, due to its adaptively adjusted learning rate. Based on the identification results, a control scheme using singular perturbation theories is developed. By using singular perturbation methods, the system order is reduced, and the controller structure is simplified. The closed-loop stability is analyzed and the convergence of system states is guaranteed. The effectiveness of the identification and the control scheme is demonstrated by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.