Abstract
To search for calmodulin (CaM) targets, we performed affinity chromatography purification of a rat brain extract using CaM fused with GST as the affinity ligand. Proteomic analysis was then carried out to identify CaM-binding proteins. In addition to identifying 36 known CaM-binding proteins, including CaM kinases, calcineurin, nNOS, the IP(3) receptor, and Ca(2+)-ATPase, we identified an ER transmembrane protein, wolframin [the product of the Wolfram syndrome gene (WFS1)] as interacting. A CaM overlay and an immunoprecipitation assay revealed that wolframin is capable of binding the Ca(2+)/CaM complex in vitro and in transfected cells. Surface plasmon resonance analysis and zero-length cross-linking showed that the N-terminal cytoplasmic domain (residues 2-285) of wolframin binds to an equimolar unit of CaM in a Ca(2+)-dependent manner with a K(D) for CaM of 0.15 muM. Various truncation and deletion mutants showed that the Ca(2+)/CaM binding region in wolframin is located from Glu90 to Trp186. Furthermore, we demonstrated that three mutations (Ala127Thr, Ala134Thr, and Arg178Pro) associated with Wolfram syndrome completely abolished CaM binding of wolframin. This observation may indicate that CaM binding is important for wolframin function and that impairment of this interaction by mutation contributes to the pathology seen in Wolfram syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.