Abstract

Transposable elements (TEs) are DNA fragments that can be replicated or transposed within a genome. TEs make up a high proportion of the plant genome and contribute to genetic diversity and evolution, affecting genome structure or gene activity. Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II DNA transposable elements. MITEs have specific sequences, target site duplications (TSDs), and terminal inverted repeats(TIRs), which are characteristics of the classification of MITE families. In this study, a Stowaway-like MITE, PTE-2, was activated in transgenic Chinese cabbage lines. PTE-2 was revealed by in silico analysis as the putative activated element in transgenic Chinese cabbage lines. To verify the in silico analysis data, MITE insertion polymorphism (MIP) PCR was conducted and PTE-2 was confirmed to be activated in transgenic Chinese cabbage lines. The activation tendency of the copy elements of PTE-2 at different loci was also analyzed and only one more element was activated in the transgenic Chinese cabbage lines. Analyzing the sequence of MIP PCR products, the TSD sequence and TIR motif of PTE-2 were identified and matched to the characteristics of the Stowaway-like MITE family. In addition, the flanking region of PTE-2 was modified when PTE-2 was activated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.