Abstract

The gut microbiota of insects is composed of a wide range of microorganisms which produce bioactive compounds that protect their host from pathogenic attack. In the present study, we isolate and identify the fungus Chrysosporium multifidum from the gut of Hermetia illucens larvae. Extract from C. multifidum culture broth supernatant showed moderate activity against a strain of methicillin-resistant Staphylococcus aureus (MRSA). Bioguided isolation of the extract resulted in the characterization of six α-pyrone derivatives (1–6) and one diketopiperazine (7). Of these compounds, 5,6-dihydro-4-methoxy-6-(1-oxopentyl)-2H-pyran-2-one (4) showed the greatest activity (IC50 = 11.4 ± 0.7 μg/mL and MIC = 62.5 μg/mL) against MRSA.

Highlights

  • IntroductionThe black soldier fly (BSF), is an insect native to the Americas whose larvae quickly colonize decomposing matter

  • Hermetia illucens, or the black soldier fly (BSF), is an insect native to the Americas whose larvae quickly colonize decomposing matter

  • An NCBI Blast search of the resulting sequence resulted in 100% identity and coverage with GenBank accession numbers AB861747.1 and AB359438.1, which correspond to Arthroderma multifidum, a telomorphic ascomycete [14,15]

Read more

Summary

Introduction

The black soldier fly (BSF), is an insect native to the Americas whose larvae quickly colonize decomposing matter. Unaffected by their pathogen-rich diet, BSF efficiently produces a range of substances relevant to the animal feed and biodiesel industries [1,2]. Trichosporon asahii was shown to be active on strains of Candida glabrata and Candida lusitaniae [6] Other antibacterial substances such as peptides [7,8] and lipids [9] have been isolated from BSF, but information is still limited. The purpose of this work is to isolate and identify

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.