Abstract
Listeria monocytogenes, a pathogenic bacterium causing zoonotic diseases, necessitates the urgent search for novel anti-Listeria monocytogenes drugs due to the continuous emergence of drug-resistant bacteria. In this study, we isolated and identified a bacteriocin-producing strain CM7–4 from seawater as Bacillus velezensis through 16S rRNA sequence analysis. Moreover, we successfully purified a novel bacteriocin named PCM7–4 from Bacillus velezensis CM7–4. The molecular weight of PCM7–4 was determined to be 40,228.99 Da. Notably, PCM7–4 exhibited broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration (MIC) of 5.625 μg/mL against Listeria monocytogenes specifically. It demonstrated heat resistance and high stability within the pH range of 2–12 while being sensitive to proteinase K degradation without any observed hemolytic activity. Furthermore, SEM analysis revealed that PCM7–4 effectively inhibited biofilm formation and disrupted cell membranes in Listeria monocytogenes cells. Transcriptome analysis revealed that PCM7–4 exerts an impact on genes associated with crucial metabolic pathways, encompassing the biosynthesis of secondary metabolites, phosphotransferase systems (PTS), and starch/sucrose metabolism. These findings highlight the significant potential of bacteriocin PCM7–4 for the development of effective antimicrobial interventions targeting food-borne pathogenic bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.