Abstract

While ion pairs are readily identified in crystal structures, longer range electrostatic interactions cannot be identified from the three-dimensional structure alone. These interactions are likely to be important in large, multisubunit proteins that are regulated by allosteric interactions. In this paper, we show that these interactions are readily detected by electrostatic modeling, using, as an example, unliganded Escherichia coli aspartate transcarbamylase, a widely studied allosteric enzyme with 12 subunits and a molecular weight of 310 kD. The Born, dipolar, and site-site interaction terms of the free energy of protonation of the 810 titratable sites in the holoenzyme were calculated using the multigrid solution of the nonlinear Poisson-Boltzmann equation. Calculated titration curves are in good agreement with experimental titration curves, and the structural asymmetry observed in the crystal structure is readily apparent in the calculated free energies and pK1/2 values. Most of the residues with pK1/2 values that differ substantially from those of model compounds are buried in the low dielectric medium of the protein, particularly at the intersubunit interfaces. The dependence of the site-site interaction free energies on distance is complex, with a steep dependence at distances less than 5 A and a more shallow dependence at longer distances. Interactions over distances of 6 to 15 A require a bridging residue and are often not apparent in the structure. The network of interactions between ionizable groups extends across and between subunits and provides a potential mechanism for transmitting long-range structural effects and allosteric signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.