Abstract
To increase measurement throughput of atomic force microscopy (AFM), multiple cantilevers can be placed in close proximity to form an array for parallel throughput. In this paper, we have measured the relationship between amplitude and tip-sample separation distance for an array of AFM cantilevers on a shared base actuated at a constant frequency and amplitude. The data show that discontinuous jumps in output amplitude occur within the response of individual beams. This is a phenomenon that does not occur for a standard, single beam system. To gain a better understanding of the coupled array response, a macroscale experiment and mathematical model are used to determine how parameter space alters the measured amplitude. The results demonstrate that a cusp catastrophe bifurcation occurs due to changes in individual beam resonant frequency, as well as significant zero-frequency coupling at the point of jump-to-contact. Both of these phenomena are shown to account for the amplitude jumps observed in the AFM array.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.