Abstract

Abstract Focusing on systems of many identical particles, Chapter 2 introduces appropriate operators to describe their properties in terms of Schwinger’s “measurement symbols.” The latter are then factorized into “creation” and “annihilation” operators, whose fundamental properties and commutation/anticommutation relations are derived in conjunction with the Pauli exclusion principle. This leads to “second quantization” with the Hamiltonian, number, linear and angular momentum operators expressed in terms of the annihilation and creation operators, as well as the occupation number representation. Finally, the concept of coherent states, as eigenstates of the annihilation operator, having minimum uncertainty, is introduced and discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.