Abstract
ObjectiveTo determine whether dipoles are an appropriate simplified representation of neural sources for stereo-EEG (sEEG). MethodsWe compared the distributions of voltages generated by a dipole, biophysically realistic cortical neuron models, and extended regions of cortex to determine how well a dipole represented neural sources at different spatial scales and at electrode to neuron distances relevant for sEEG. We also quantified errors introduced by the dipole approximation of neural sources in sEEG source localization using standardized low-resolution electrotomography (sLORETA). ResultsFor pyramidal neurons, the coefficient of correlation between voltages generated by a dipole and neuron model were > 0.9 for distances > 1 mm. For small regions of cortex (∼0.1 cm2), the error in voltages between a dipole and region was < 100 µV for all distances. However, larger regions of active cortex (>5 cm2) yielded > 50 µV errors within 1.5 cm of an electrode when compared to single dipoles. Finally, source localization errors were < 5 mm when using dipoles to represent realistic neural sources. ConclusionsSingle dipoles are an appropriate source model to represent both single neurons and small regions of active cortex, while multiple dipoles are required to represent large regions of cortex. SignificanceDipoles are computationally tractable and valid source models for sEEG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.